
Introduction to
Arrays in C

CSE 130: Introduction to
Programming in C

Stony Brook University

Arrays

❖ Programs often operate on large quantities of similar
data

❖ Assigning a unique variable (and name) to each piece of
data is tedious

❖ Ex. var1, var2, var3, ...

❖ An array is a collection of many variables of the same
type, all under one name

Declaring An Array

❖ To declare an array, follow the array name with a size,
enclosed in square brackets:

double foo[5];

❖ Array sizes must be integer values

❖ Array sizes must be positive (> 0)

Array Elements

❖ Individual elements of an array are accessed by using
the array name, followed by an (integer) index value,
enclosed in brackets

❖ Ex. myArray[1]

❖ Indices are numbered starting with 0

❖ Thus, myArray[1] refers to the second element in
myArray

Array Numbering

❖ The name of an array (e.g., values) actually refers to
the location in memory where the first array value is
stored

❖ The number in brackets (the index) is an offset that
indicates how many elements to jump ahead from the
array beginning

❖ Ex. values[3] means three “jumps” from where
values[] begins in memory

Array Access Examples

int numbers[10];

numbers[0] = 14; /* first element of numbers */

int temp = numbers[5];

numbers[15] = 21; /* what will this do? */

Array Boundaries

❖ Remember that the elements of an array are numbered
from 0 to n-1

❖ C will not check to make sure that your program only
accesses valid array elements!

❖ This means that you can (accidentally) read memory
that doesn’t belong to your array

❖ This is a common programming error

Initializing Arrays

❖ Arrays can be initialized when they are declared:

int bar[5] = {5, 4, 3, 2, 1};

❖ If the array size is greater than the number of elements,
the remaining array elements are set to 0:

int foo[20] = {2, 4, 6, 8};

Arrays and Loops

❖ Loops (especially for loops) are the perfect way to
manipulate arrays:

int a[5];
int i;

for (i = 0; i < 5; i++)
a[i] = i * 2;

Array Examples

Program 1

❖ This program:

❖ reads in a list of 10 integers

❖ multiplies them together

❖ prints their product

❖ prints the list in reverse order

Program 1, part 1#include <stdio.h>

/* constant declarations */

const int SIZE = 10; /* max elements in array */

int main (void)

{

/* Variable declarations */

int values[SIZE]; /* array to hold user input */

int product = 1; /* product of user input */

int i, temp; /* temporary variables */

Program 1, part 2

/* Read in (SIZE) values from the user */

for (i = 0; i < SIZE; i++)

{

printf("Enter a value: ");

scanf(" %d", &temp);

values[i] = temp;

}

Program 1, part 3

/* Compute the product of the values */

for (i = 0; i < SIZE; i++)

product = product * values[i];

/* Print the product */

printf("\n\nThe product is %d\n\n", product);

Program 1, part 4

/* Print the list in reverse order */

for (i = SIZE - 1; i >= 0; i--)

printf("%d\n", values[i]);

return 0;

}

Program 2

❖ This program:

❖ Generates a list of 200 random integers between 0
and 100

❖ Counts the number of times each value occurs

❖ Prints the number of times each value appears

Program 2, part 1#include <stdio.h>

#include <stdlib.h>

#include <time.h>

/* Constant declarations */

const int SIZE = 200; /* # of values */

const int RANGE = 101; /* # of possible values */

int main (void)

{

/* Variable declarations */

int values[SIZE], counts[RANGE];

int i, temp; /* temporary variables */

Program 2, part 2
/* Seed the random number generator */

srand(time(0));

/* Generate SIZE random integers */

for (i = 0; i < SIZE; i++)

{

values[i] = rand() % RANGE;

}

Program 2, part 3
/* Initialize counts[] */

for (i = 0; i < RANGE; i++)

counts[i] = 0;

/* Count # of occurrences */

for (i = 0;i < SIZE; i++)

{

temp = values[i];

counts[temp] = counts[temp] + 1;

}

Program 2, part 4
/* Print # of occurrences */

printf("Value\tOccurrences\n\n");

for (i = 0; i < RANGE; i++)

{

printf("%d\t%d\n", i, counts[i]);

}

return 0;

}

